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PLANE AND SPACE FIGURATE NUMBERS: VISUALIZATION
WITH THE GEOGEBRA S HELP

Francisco Regis Vieira AlvesFrancisco Evamar Barros

Abstract: The study and interest of figurat@mbers can be observed even in ancient Gréate.

the other hand, it becomes vempgortant the historical understanding abam evolutionary
process and the particulgenerakation of such 2D3D and mD figurate numbers andhey

remain the interest of curreatientificinvestigationsOn the other hand, in Brazil, when we talk
abou Mathematics Education, the component of visualization acquires more and more relevance
for the teachingln this way, in the present work, we present a proposal of discussibe figure
numbers, with idea that thenderstanding of arithmetialgebrac and geometric propertiesn be
facilitated with the us of GeoGebra software and it’s use by the mathematical teacher.

Key words: Figurate numbers 2D and 3D,isMalization, Mathematics Teaching, Mathematics
Education.

1. Introduction

The mathematicahistorian Eves (1969: 53) explains that "the ancient Greeks distinguished between
the study of conceptual relations between numbers and the practical art of counting." The author
recalk that the Pythagoreans spoke aboutnivbers that allegedly possedsuaystical properties,

such as perfect numbers, deficient numbers, and abundant numbers; however, in this sectibn, we wi
focus on the study of figuratehich, according to Eves (1969, 54) originated with the first members of
socety Pythagorean. In essmn a figurate number presertse links between Arithmit and
Geometry, and other aspects are commelyeaves (1969, 1983Rickson(1928) and Katz (1998).

In it’s turn,Popper (1972, p. 106) mentions without further explanation that Greek reasppiiep

to forms geometrically, was extended to solids, despite the difficulties of identifying the 3D
configurations which suggests the discussion of pyramidal numbers, or more specifically, pyramidal
numbers triangles, square pyramidal numbers, penthggraamidal numbers (&shy,2007).

Deza & Deza (2012) comment on the interest of ancientkGreghematicians about the figurate
numbers. The theory of figurateimbers does not belong to the central domains of Mathematics, but
the beauty of these numbextiracted the attention of many scientists over the ybathis sense, the
authors comment afterward on an extensive list of mathematicians who have worked in this field.

The list (not full) of famous mathematicians, who worked in this domain, con$iBighagoras
of Samos (ca. 582 BCa. 507 BC), Hypsicles of Alexandria (190 B20 BC), Plutarch of
Chaeronea (ca. 46a. 122), Nicomachus of Gerasa (cai &0 120), Theon of Smyrna (70
135), Diophantus of Alexandria (ca. 2b@. 290), Leonardo of Pisalso known as Leonardo
Fibonacci (ca. 1170ca. 1250), Michel Stifel (14871567), Gerolamo Cardano (150576),
Claude Gaspard Bachee M'eziriac (15801638), RenéDescartes (1594650), Pierre de
Fermat (16001665), John Pell (1611685), Blaise Pascal1623 1662), Leonhard Euler
(1707 1783), Josephouis Lagrange (1738.813), AdrieaMarie Legendre (1752833), Carl
Friedrich Gauss (1771855), AugustiALouis Cauchy (17891857), Carl Gustav Jacob Jacobi
(1804 1851),Wac_law Franciszek Sierpinski (188289), Barnes Wallis (18871979).(Deza
& Deza, 2012, p. Xvii).

In addition, several othdbrmal theorems can be formulated from the figure numbers and they are
closely related to special classes of other numbers and nunsaieences, such as Fibondcatas
numbers, Mersenne and Fermat numi§érenchang, 2007). Thus, in the field of Numbdedry, we
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can find innumerable generalizatior@n the other hand, we observe the relatigrs of figurate
numbers with important theorems still in the present dagxpressed below Deza & Deza (2012).

Figurate numbers were studied by the ancients, as far back as the Pythagoreans, but nowadays
the interest in them is mostly iconnection with the followingcer mat 6 s pol ygonal
theoremIn 1636, Fermat proposehat every number can be expressethasum of at mosh

m-gonal numbergDeza & Deza, 2012, p. Xvii).

To exemplify, let's look at the examples given by Deza & Deza (2012). Starting from a point, add to it
two points, so that to obtain an equilaterglrigle. Sixpoints equilateral triangle can be obtained from
threepoints triangle by adding to it three points; adding to it four points givegdiets triangle, etc.

So, by adding to a point two, three, four etc. points, then organizing the poitits form of an
equilateral triangle and counting the number of points in each such triangle, one can obtain the
numbersl, 3,6,10,15, 21, 28, 36, 45, 55which are called triangular numbeimilarly, by adding

to a point three, five, seven etc. points and orgagithem in the form of a square, one can obtain the
numbersl, 4,9,16, 25, 36,49, 64,81,100 which are calledquare numbers.

On the other hand, the authors also describe the pentagonal, hexagonal numbers and the method for
their construction and, correspongliyy the visualization in the plane. In facly hdding to a point
four, seven, ten etc. points and forming from them a regular pentagon, one can cprstagbnal
numbersl, 5,12, 22,35,51,70,92,117,14E. Following this procedure, we calso construct

hexagnal numbersl, 6,15, 28,45, 66,91,120,153,19C. In figure 1 we visualize some particular

examples, provided by Deze & Deza (2012) about the 2D figurate nunikders. (1972, p.30)
comments that the Pythagoreans knew the behavior of the folldwmitg sum for he triangular

. n(n+1) .
figure numbersl+ 2 3 -+ n+ —=—= (Hoggat,1974 Reuiller, 2009.
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Figure 1. Deza & Deza (2012) describe the construction of some examples of 2&tdigumbers.
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In figure 1, we can see some static constructions that correspotie timitial 2D figurate numbers.
Deza & Deza (2012, pp. 23) further explairseveral other examples of 2D figuratembers when
they indicate that:

Heptagonal numbers , , 18, 314 55 81, 112, OclagoBal 189,

7
numbersl, 8 21, 40, 65

, 96, 133, 1 NenagorzalPnimber® 8 0 ,
1, 9, 24, 46, 75, 111, 154, De&@oda nudbérg 10,23,2 5, :
52, 85, 126, 175, 232, Hendecag@dl @Gupersl, 11, 30,.58,( S| oan
95, 141, 196, 260, 33 3Dodetaydnal numbets 12, 33(68,110b,a ne 6 s
156, 217, 288, 369, 46(0Deza&Deza, 2012,p&B)oaneds A051

We have thus seen thestription of several 2D figateand other supplementary information that can
be found, for example, in th@nline encyclopedia of the integer sequerfoeinded in 1964, by the
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mathematician Neil James Alexander Sloane (1B39hus, in the subsequent sections, we will
present somereliminary and mathematical ggerties on the 2D and 3D figuratembers. Then we

will see howthe softwareGeoGebra can providdidacticalsituations for the use of visualization and

the dynamic capacity othe constructions allowed by thsoftwae andthe identification and
understanding ofhe numerical and geometric propertiekerived from thesepecialnumbers. Thus,

with regard to the development of ideas and conceptions about Mathematics Education in Brazil, we
have the possibility to identify &t the use of technology for teachinf§ Mathematics allows the
description of new scenarios for learning and teacfAhges; Borges NetoDuarte Maia2012)

2. Some mathematical aspects about the 2D figurate numbers

Deza & Deza (2012, p. 4) explain ththe general rule for enlarging the regular polygon to the next
size is to extend two adjacent sides by one point and then to add the required extra sides between those
points So, to transform-th m-gonal number into then(+ 1)-th mgonal number, onedfoins MT 2)n

+ 1 elementsThus, let us consider theth mgonal numberS, (1) is the sum of the first n elements
of the arithmetic progressiod,1+ (m -2),1 2M 2),1 3HA 2),1 4+ 2). -m
In a smplified way, we can write the general mathematical formulacatdd bythe finite sum

Su(N=141 ¥(nO2)- L 2(Mm2P L -83M+2)+. @ (M 2)tn L

In particular, we gesome particular expressions that we listed below:

S(N=1+«1 6 2) (1+2(3+2) -0 3B ... 4 B2 +)) -1 2 3-- ¥
S(N=1+1 @4 2)) Q+2(4 2) -1 3¢4 2)... 1 (& 2)( +1)) -1 3 5-- =%
S(N=1+4 (6 2) @+2(5+2) -0 36 2)... {1 G+2)( ) -1 4 -+ =B
S(N=141 (6 2)) (1+2(6+2) -1 366 2)... {1 (6+( +1))-1 5 9-- =3
S(N=1+1 @ 2) @+2(7+2) -1 3¢ 2)... {1 (7 2 +1) -1 6 11.- SnH;
S(N=1+41 B 2)) 1+28+2) -1 3@ 2)... 1 B2 +)) -1 7 13- £n+5;

Above expression implies théollowing recurrent formula formgonal numbers indicated by
S(ntl) =5 (n @ (M 2)-n, @) I Inparticular, we gethat S;(n+1) =§( N @n

S(n+D) =9(n @ n IHS(n+D) =](9 @ n IHS(n+1) =]( N 4 n IS(n+))
=S(0 5n B,S(n+l) =3(n 6 n 1) etc.

The following theorem describes a general formulalerdescription of any 2D figurateimber.The
reader will note that wprovide more than one demonstration or proof concerning the same formula.

m- 2
Theorem 1: Thegeneral formula fom-th m-gonal number isS (N :(—2)( rf -r) + or

_n((m-2)n-m 4) 1
Sn(N > >
Proof 1. We consider the set,(1+1 @ 2)),1 2+#n @), 3 M +2)Q @& " 2) @+ 1

and $nce thefinite sum of the firsih elements of an arithmetic progressiare can write the fraction

Sﬂ(r_):n%éy(l Hm 2) (nOl))-gFF%(l Mm D m 2) - r8+_(mé§)2n m- 4

n( A -i) A 2 1, for every integem?2 1 and m2 3.

2 hd 2
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_(m-2)iF (m 4n (m A (m2)p2n{m-2(r -0 2n (2 )

We can siill writeS, () = n ™ 2)2 -m 4 g(ln 2)'2'2 (m4)n mn 22r12- mn4 n
_mQr_ 9 24 4|+____n(n2 n) e 2nA
2 2

Proof 2 Moreover, we can takine speciafinite summationandwe can group to match the second
terms we observe in the two finite sums belblext, let's consider thexpressiori2(B, ().

6S,(0=0 + 1 FLH 2 b ok ke 410 H2PH)
(S (D=1 4m 2)(n 1} 1+(m+2)(n2) -~ + 14

will find that 288, () € (M 2)-(n ©) -~ (@ (m 2) ¢n )} @ (m 2x(nQ)
n((m- 2)n -m A)A
2

. In this way, we

=n((m -2)n m 4 (N

Proof 3 Another way to derive the general formula 8, (1) is to use the first threergonal
numbers @ find the coefficientsA, B, and C of the general -hd degree polynomial
p(N=Arf +Bn € Forn=1\pl) A B C+landforn=2\p(2) 4A 2B C+ m.
Finally, for n=3 \ p(3) ®A 3B C+ 3nm= Z Then we will solve the following system
eéA+B € F

1 . m- 2 4 -m , ,
i14A+2B €C m . This leads to A = > ,B = > ,C & In this way, we find that
t9A+3B € 3m 3

am-2 @ . 4&m g n((m-2)n-m 4
N=g— + n A

P(") c 2 = g g- 2

The formulas form-gonal numbers with3¢ m 30 are described in the in tH® | o0 a @reLihes

Encyclopedia of Integy Sequenceare given in the table beloWe can determine the particular cases

of the formulas that we can identify in figure 2, in the left column. For example, if we consider the
triangular numbers 2D, we can consider that we deal with a polynomdaidurof the second degree

eA+B C E
Ar? + Bn +C and, we can get tha{t4A+ 2B {C 3,n 172,% This leads to A:E =B, C 6.
foa+3B 1 6 2
eéA+B 1€ F
Moreover, br the square numbers, we can get the sy?ltém+ 2B #C & ,n 12,%. This leads to
foa+3B 1 &
n’+n

A=1,B #,C E€.In both cases, we determine that we can w§éer) = andS,(0=rf.

In Figure 2, Deza & Deza (2012, p.6) indicate some first few elements of the corresponding sequences
and the Figure Numbers nuetis of these sequences $toane's OfLine Encyclopedia of Integer
SequencesBased on the table below we can analyze the values indicated foOrthéne
Encyclopedia of Integer Sequenoebich is an extensive database, which records sequences of
integersireely available on thinternet
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Name Eornlula Sloane
Triangular %(‘nﬁ + n) 3 G 10 15 21 28 36 45 55 66 A0D0217
Square %fﬂg —0-mn) 4 9 16 25 36 49 G4 21 100 121 AQ000200
Pentagonal -2—1'31'12 —1-n) B 12 22 35 51 70 92 117 145 176 AQD0326
Hexagonal %[41:2 — 2n) 6 15 28 45 66 01 120 153 190 231 AQ0D0384
Heptagonal (5n2 — 3n T 158 34 55 81 112 | 148 180 235 286 A0DDS6E6
? ( )
Octagonal -? I:Cm2 — 4n) 8 21 40 65 96 133 | 176 225 280 341 AQD0567
Nonagonal [7?12 — Bn) 9 24 46 75 111 | 154 | 204 261 325 306 AQ01106
1
Decagonal ? [8?12 — 6n) 10 T 52 85 126 | 175 | 232 207 aTo 451 AQ01107
Hendecagonal F[‘JﬁQ — Tn) 11 | 20 58 as 141 | 186 [ 260 333 415 506 AD51682
Dodecagonal (10n2 — 8n 12| 28 64 105 | 156 | 217 | 288 360 460 561 AD51624
( ]
Tridecagonal j(lln2 — 9n) 13 | 26 7O 115 | 171 | 238 | 316 405 505 616 AD51865
Tetradecagonal 1 (121:2 — 10mn) 14 | 20 TG 125 | 186 | 259 | 344 441 550 671 AOL1E66
15 | 42 82 135 | 201 | 280 | 372 ATT 505 T26 AD51867

Pentadecagonal 7 (131:2 — 11n)

? 16 | 45 88 145 | 216 | 301 | 400 513 640 781 AD51868
17 | 48 04 155 | 231 | 322 | 428 540 685 236 AD51860
18 | 51 | 100 | 165 | 246 | 343 | 456 585 T30 801 AQ51870
19 | 54 | 106 | 175 | 261 | 364 | 484 621 TTS Q46 AQ051871
20 | 57 | 112 | 185 | 276 | 385 | 512 657 820 1001 | ADO15872
21 | 60 | 118 | 195 | 201 | 406 | 540 603 865 1056 | AO15873
22 | 63 | 124 | 205 | 206 | 427 | 568 T20 a10 1111 | AO15874
23 | 66 | 130 | 215 | 321 | 448 | 5086 TE5 a55 1166 | AO15875
24 | 69| 136 | 225 | 2336 | 469 | 624 801 1000 | 1221 | AOL15876
25 | 72| 142 | 235 | 351 | 490 | 652 837 1045 | 1276
26 | 75 | 148 | 245 | 366 | 511 | 680 873 1090 | 1331
27 | T8 | 154 | 255 | 381 | 532 | TO8 a09 1135 | 1386
28 | 81 | 160 | 265 | 3906 | 553 | T36 045 1180 | 1441
20 | B4 | 166 | 275 | 411 | 574 | T64 a81 1225 | 1496
30 | 87 | 172 | 285 | 426 | 595 | 792 | 1017 | 1270 | 1551

Heoxadecagonal ?(1-‘1?12 — 12n)
Heptadecagonal 5(15n“ — 13n)
Octadecagonal ?(161:2 — l1l4n)
MNonadecagonal _z(l Tn< — 1lbn)

Icosagonal ?—(18?12 — 16n)
Icosihenagonal 7 (1‘3?12 — 17n)

Icosidigonal ?(2()?12 — 18n)
Icositrigonal ?—(21?12 — 19n)
Icositetragonal ?(22?12 — 20n)
Icosipentagonal ?(231:2 — 21n)
Icosihexagonal ?(2-‘11:2 — 22n)
Icosiheptagonal _E(isn — 23n)
Icosioctagonal ; (261:2 — 24n)
Icosinonagonal %(irﬂ — 256n)

2

o e e e e e el b b b b e b e b e ek e b b ek e ek e b e e

Triacontagonal 1)-(2811 — 26m)

Figure 2. Deza & Deza (2012) describe the construction of some examples of 2&tdigumbers.

We then observe the explanations of Deza & Deza (2012) concerning the study of centered polygonal
numbersor then-th cerieredm-gonal number, which we denote B§.(1) .

The centered polygonal humbefsr, sometimespolygonal numbers of the second ojderm

a class of figurate numbers, in which layers of polygons are drawn centered about a point. Each
centered polygonal number is formed by a central dot, surrounded by polygonal layers with a
constant number of sides. Each side of a polygonal layer contains one dot more than any side of
the previous layer, so starting from the second polygonal laybrlager of acenteredn-gonal
numbercontainsm more points than the previous lay@eza & Deza, 2012, p. 48).

In the figure3 we see aentered triangular number, a centered square numbentered pentagonal
number and &entered hexagonalumber, vhich represents a hexagon ith a dot in the center and all
other dots surrounding the center dot in a hexagonal laltidegure 3 we see some of these planar
configurationsWe can compare their numerical values with the 2D figurate numbers indicdted in
predecessor paragrapkge will then deal with the dimensional increase for such numbers.

. - "\ -aa
s a - - -ﬂ,\ ‘1‘ LI ) n
PR o T I N R}
b - R £ qep oy
- .. /S 77 "R e
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L L ’,,r . o
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Figure 3. Deza & Deza (2012) describe the construction of some examples of 2&tdigumbers.
In the following section, we will cover sonmeathematicaproperties about the 3D figurate numbers.

3. Some mathematical aspects about the 3D figurate numbers

Then-th m-pyramidal numbeiS *( 1) is defined as the sum of the firsmgonal numbersS *( 1) =
=S, 5,2 {3 -+ St ). So, it holds the following recurrent formula for thme-

pyramidal numbersS *(N = S3(nd) S( H 1 1. The following theorem describes a
general formula for the description of aBy figuratenumber.

Theorem 2: The general formula forn-th m-gonal pramidal number has the form
n(n+1) @m 2 n m
SmS( r) - @ ) .
6
Proof.Let us prove it bpMathematical inductiarin fact, forthe initial casewe consider than=1 \
s 6 12 @ 120205 12Hn DmO5)-12({M+2) 1nd !
0= =% 6 6 6

nton+ 1, one obtainS }(n+1) =S3( N S( niy n@gn # ((@ 2)-n nd5-

. Going from

6
(n+H(m -2)(n B m 4+ (+D) @m 9 nE m) 3(n+)(m+2) 34 M)
2 6
_(n+1) @m A (1) W5 @) 3+(m ) 3(m 2)+3(4 1)
= - -
_(n+ne® Bn H(mM 2) nB m-3(4+m) 2 (n 1) (d+ 3n )@ 2y 5n nm ¥ 3¢
6§ 1 i 6 & 1
é u é

_(n+)é(’ 8n IH(m 2) (5w nm- 12 Bm) -10 16 2 -3n -3n@
6 & 1 b
_(n+)é(* 8n IH(m 2) 5n+ nm 10 @
6 & 1 o
_(n+)é(’ 8n IH(m 2) 50t nm 10 2m -m 2 +10 -2m- 12 Bz
6 & 1 o
:(n+1)¢(n2 Bn M 2) (M) m (m 2 25 m 3(4- ma

6 & 1 i
_(+hH(n 2)(mn M 2n 2-mb5) _{n H(n&)(m2)(n1} m5

6 6
. n(n+1) @m 2n m 5)

Deza & Deza (2012p.89) comment that theormula S.°(n) = 5 was

known to Archimedes (28212 BC) andt was used by him for finding volume®n the other hand,
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in current research, waan see the interest mfsearchers the generalization process of tfasmula.
This way, we can determine the 4D, 5D, . mgonal figurate numbers (Arjun, 2013).
Algebraically,n-th centeredn-gonal numbeiCS, (1) is obtained as the sum of the firstlements of
the sequence,th,2m,3m, . . . So,by definition, it holdsCS, (N =1 +m Zm 3#m--- +( nd#) 1.
In particular, we getCS§(nN=1 £ & 9+--+3(n+1, CS(N=14 & 12 --- +4(n+ 1,
CS(Nn=1+H ¥ 1% ---+5n+1, CS(N=16 ¥ 18 --- + 6(n+ 1, etc.Consequently,

the above formulates the following recurrent fotandor the centered fgonal numbersis
CS, (1) =CS(h + nOCKL) 1. On the outher hand, we note that the finite sum

m+2m 8m + (# 1)-m &(1=2 @ -+ (m 1)+ nqry.Weobtain the following
m@ mna@
5 :

,CS,(N=2 d 2-n @C%(O:w’

general formula fon-th centeredn-gonalnumber:CS, (1) =1 +m n@Z' D

o .
In particubr, we have CS(n) = M

) 70 7 nO2
C§(n =31 -3 11, CS,(r):f
In the last sections, we discuss some formal properties aocktigeabout the 2D and 3D figurate
numbers. Now, with the help of the GeoGebra software, we willrstdhey can be represented in a
dynamic waywith the software and the visualization constitutes an important component for the
essential properties of thitass of numbers.

,CS(N=4 @ 4 n q etc, etcb

4. Visualization of 3D figures figures with GeoGebra software

In the current section, we present some examples involving the use of Geogebra software in order to
visualize certain numerical, geometric (2D and 3D) properties involviragions derived from the
figurate numberdn figure 2, to the right side, with the aid of Geogebra software, we can visualize the
dynamic description of the increasing composition and determination of the 2D square numbers. On
the other hand, on the rigkide, in the same figure, we can visualize the corresponding configuration

of the pyramidal numbers based on the square nunffrers. the last section, we know the following
n(n+1)(2n 4)

6
mobile selector, imur case, we set the values are determinetiblx @5.

formula S*(n) = . With the help of the software GeoGebra, we ealjust the
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Arquivo Editar Exibir OpcBies Ferramentas Janela Ajuda Entrar...
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6
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Figure 4. Visualization of the 2D square numbers andggearepyramidal numbers of square base 3D with the
aid in GeoGebra softwar¢Source: Athors' elaboration)

On the left side, in figure 4, we can identify the description of the 2D figure numbers and that, when
we relate to the 3D figure on the right side, in the same figure, we can understand that they are
precisely the base of the 3D pyrial, for different values ofLl¢ k @@5. The dynamic properties of
GeoGebra software allow the immediatnd precise calculation of algebraic expression

S2(1) = n(n+1)(2n 4)

visualization and the identification of arithmetic and geometric spatial properties derived from the
configurdion indicated by a squar@yramidal number.The software GeoGebraenables the
exploration of various viewing angles atite acquisition of amathematicaunderstanding of the
growth andhumeraicaproperties of the figuse4 ancb.

4240, for n=15. In figure 4 we can identifyanother angle for the 3D

Arquivo Editar Exibir OpcBes Ferramentas Janela Ajuda Entrar.
AL Pl el ) 4] @4 N pec|+ EEE
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Figure 5. Visualization of the 2D square numbers and the pyramidal numbers of square base 3D with the aid in
GeoGebra softwardSource: Auhors' elaboration)
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We know that a pentagonal pyramidal number corresponds to a pentagonal pgiamiatly, we
know that a hexagonal pyramidal number corresponds to a hexagonal pyramid. In figure 5, on the left
side, a dynamic configuration that canwgrand decrease, in the dependence of the delimiting control
n(n+1)(4n -1)

6
and, the software allows to explore several values and to perceive the corregp@miitions for
both windows tht we find in figures 6 and. Different viewing angles can be explored immediately
with the use of GeoGebra software.

that we defined as follows and valugé¢ k @5. We know the formulaS,>*(n) =

¢ PENTAGONAL 3D.ggb = D
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Figure 6. Visualization of the 2D hexagonalimbers and thelexagonal pyramidal numbers oéRtagonabase

3D with the aid in GeoGebra softwaig&gource: Authors' elaboration)

In the following case, we bring to the reader a learning scenario for the analysis of 2D and 3D
behavior corresponding to the heptagonal pyramidal number that corresponds to @nlaéptag

n(n+1)(5n -2)
6

pyramid From the previous section, we know th%;f’( n= . In a similar way to the

previous cases, from the variations of the selector command, we can verify and predict the behavior of
several cases and, above all, examine therhd@rphinar and spatial configuration for this numbers.
Let us now see Figures 6 andlid.Figure 6 we can identify that the software Geogebra allows the
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handling and manipulation with a large set of different configunadéind dynamic configuration of

Heptagonal pyramidal numbergVe can choose a more stia angle for the&isualization!
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Figure 7. Visualization of the 2D pentagonalimbers and thpentagonal pyramidal numbers of pentagonal
base 3D with the aid in GeoGebra softwgi®ource: Authors' elaivation)

For example, in the figure 6, evcan easily evaluate the numerical behavior of the following
n(n+1)(5n -2) n(n+1)(5n -2)
6 6

<931 for k=15 and S*(n) = 880 for

expressionS,*(n) =

k =10. In figure 7 we visuafie different angles of analysis and manipulation of the 3D construction
corresponding to a heptagonal pyramidal numbers \&®. can conclude that by applying some
properties of GeoGebra software we can explore and idestifge arithmetic, algebraic and
geametric properties, in a nestatic way, when compared with the constructions we present in Figure

1. For example, when constructing constructs that have a 2D representation and 3D, we can visualize
the corresponding qualitative relations, as we visualizebe previous figuredn addition, as we can

verify, with the use of technology we can determinalifierentiated didacticor a didactical
transposition for the study and mathematical investigation about the 2D and 3D figurate numbers. This
ability, more and more, is essential for the mastery of the Mathematics teacher in Brazil.
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Figure 8. Visualization of the 2D heptagonalimbers and theeptagonal pyramidal nubersbase 3D with the
aid in GeoGebra softwar¢Source: Authors' elaboration)

Figure 9. Visualization of the 2D heptagonalimbers and theeptagonapyramidal number8D with the aid in
GeoGebra softwar€Source: Authors' elaboration)
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